Reliable estimation of biochemical parameters from C₃ leaf photosynthesis-intercellular carbon dioxide response curves.

نویسندگان

  • Lianhong Gu
  • Stephen G Pallardy
  • Kevin Tu
  • Beverly E Law
  • Stan D Wullschleger
چکیده

The Farquhar-von Caemmerer-Berry (FvCB) model of photosynthesis is a change-point model and structurally overparameterized for interpreting the response of leaf net assimilation (A) to intercellular CO₂ concentration (Ci). The use of conventional fitting methods may lead not only to incorrect parameters but also several previously unrecognized consequences. For example, the relationships between key parameters may be fixed computationally and certain fits may be produced in which the estimated parameters result in contradictory identification of the limitation states of the data. Here we describe a new approach that is better suited to the FvCB model characteristics. It consists of four main steps: (1) enumeration of all possible distributions of limitation states; (2) fitting the FvCB model to each limitation state distribution by minimizing a distribution-wise cost function that has desirable properties for parameter estimation; (3) identification and correction of inadmissible fits; and (4) selection of the best fit from all possible limitation state distributions. The new approach implemented theoretical parameter resolvability with numerical procedures that maximally use the information content of the data. It was tested with model simulations, sampled A/Ci curves, and chlorophyll fluorescence measurements of different tree species. The new approach is accessible through the automated website leafweb.ornl.gov.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span.

A quantitative analysis was applied to the stomatal and biochemical limitations to light-saturated net photosynthesis under optimal field conditions in mature trees and seedlings of the co-occurring evergreen oak, Quercus ilex L., and the deciduous oak, Q. faginea Lam. Stomatal limitation to photosynthesis, maximal Rubisco activity and electron transport rate were determined from assimilation v...

متن کامل

The effect of leaf-level spatial variability in photosynthetic capacity on biochemical parameter estimates using the Farquhar model: a theoretical analysis.

Application of the widely used Farquhar model of photosynthesis in interpretation of gas exchange data assumes that photosynthetic properties are homogeneous throughout the leaf. Previous studies showed that heterogeneity in stomatal conductance (g(s)) across a leaf could affect the shape of the measured leaf photosynthetic CO(2) uptake rate (A) versus intercellular CO(2) concentration (C(i)) r...

متن کامل

Fitting photosynthetic carbon dioxide response curves for C(3) leaves.

Photosynthetic responses to carbon dioxide concentration can provide data on a number of important parameters related to leaf physiology. Methods for fitting a model to such data are briefly described. The method will fit the following parameters: V(cmax), J, TPU, R(d) and g(m)[maximum carboxylation rate allowed by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), rate of photosyntheti...

متن کامل

Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: Bayesian parameterization of photosynthesis models.

Relationships between leaf traits and carbon assimilation rates are commonly used to predict primary productivity at scales from the leaf to the globe. We addressed how the shape and magnitude of these relationships vary across temporal, spatial and taxonomic scales to improve estimates of carbon dynamics. Photosynthetic CO2 and light response curves, leaf nitrogen (N), chlorophyll (Chl) concen...

متن کامل

Localization of (photo)respiration and CO2 re-assimilation in tomato leaves investigated with a reaction-diffusion model

The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. Howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 33 11  شماره 

صفحات  -

تاریخ انتشار 2010